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ABSTRACT: Based on the concept of localized shear
transformation zones (STZ), a thermodynamically consist-
ent model for the viscoplastic deformation of amorphous
solids is developed. The approach consists of a dynamic
description of macroscopic viscoplasticity that is enriched
by the evolution of number density and internal structure
of the STZ for detailing the origin of viscoplastic flow. So
doing, the activation of STZ upon deformation and their
subsequent internal re-arrangements are treated as two

distinct processes. The detail of the model permits to relate
it to small-scale information obtained from experiments or
atomistic computer simulations, e.g., in the form of STZ-
activation energies and an approximate STZ-volume. The
model is illustrated on the example of polycarbonate.
VC 2012 Wiley Periodicals, Inc. J Appl Polym Sci 000: 000–000, 2012
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INTRODUCTION

When solid materials are deformed beyond a critical
stress level, processes set in such that any further
deformation is not fully recoverable. The origin of
such nonelastic behavior is manifold, the most dras-
tic example being failure due to fracture. However,
even before that catastrophic mode of failure, a
sequence of equally important events occurs, such as
initial yielding, followed in many materials by
strain-softening, and strain-hardening. In this article,
we concentrate on modeling the yielding behavior,
particularly of amorphous solids, such as in poly-
meric and metallic glasses. Specifically, we strive to
relate the plastic deformation to the corresponding
changes in the microstructure.

The origin of plastic deformation in crystalline sol-
ids has been uncovered in terms of crystal defects,
namely the dislocations and the associated slip-sys-
tems. In metals, the discovery of dislocations goes
back to Orowan,1 Von Polanyi,2 and Taylor,3 and
had a major impact on the further understanding,
modeling, and actual design of metals. While dislo-
cations and slip-systems were discovered and intro-
duced in the field of metals, they also fell on fruitful
ground in the field of crystalline polymers, and lead
to significant understanding of polymer crystals.4–8

A similar story of success for amorphous solids is
still to come. Considering the undeformed state, it is
a research topic since a considerable time to identify
structural differences between the liquid and the
glassy state, both being amorphous. Beyond that, the
identification of structural changes during mechani-
cal deformation is studied intensely. The experimen-
tal work of Argon et al.9,10 on bubble rafts lead to
significant insights. Specifically, the notion of
so-called shear transformation zones (STZ) was
introduced to denote small regions in which plastic
deformation takes place. Such STZ have also been
observed experimentally on colloidal systems.11

Since in many systems the constituent units are too
small to be observed, computer simulations have
been used instead. For example in amorphous sili-
con, discrete liquidlike domains have been identified
as the carriers of plastic deformation,12 that come
into play upon a critical threshold of stress is
reached.13 Simulations have also been performed on
generic model systems, with similar results about
localized STZ (see e.g., Refs. [14,15]). Structural sig-
natures have also been elaborated in terms of the in-
herent structures.16,17

Specifically for glassy metals, the microscopic
mechanism for steady state inhomogeneous flow in
metallic glasses has been studied in the seminal
work of Spaepen.18 It was concluded that the micro-
scopic mechanism for steady state inhomogeneous
flow is based on a dynamic equilibrium between
stress-driven creation and diffusional annihilation of
structural disorder. In agreement, two-dimensional
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molecular dynamics simulations of an atomic glass19

revealed that plastic strain is related to local shear
transformations, which were found to be mostly in
the same direction as the applied stress. In addition
to such simulations (see also Ref. 20), models have
been developed for the description of the viscoplas-
tic deformation in metallic glasses.21

For the case of amorphous polymeric solids, the
structural units for plastic deformation are also
intensely debated. For an introduction to the defor-
mation of amorphous polymers, the reader is
referred to Ref. 22. An overview of the concepts
developed since the middle of the 20th century on
concepts concerning the mechanism of plasticity in
solid polymers has been compiled by Oleinik.23 On
the basis of published data, it is concluded that the
plastic deformation of solid polymers is to some
degree accompanied, but not dominated, by chain
straightening, at least at small and moderate strains.
Rather, short-scale shear transformations are at the
kinetic origin of plasticity. The latter conclusion
allows factually to draw a close analogy between
polymeric and metallic glasses, with respect to yield-
ing. Several models have been developed to describe
plastic deformation of solid polymers.24 While
Escaig drew an analogy to crystal plasticity by
employing dislocation-like deformation,25 Robert-
son26 presented a molecular model in which the
shear-stress is introduced as a bias on the rotational
conformation of backbone bonds, producing a poly-
mer structure similar to a liquid above the glass
transition. The model predictions were shown to
compare favorably with experiments for polystyrene
and polymethyl-methacrylate. Later, Argon27 devel-
oped a theory based on thermally activated produc-
tion of local molecular kinks, and good agreement
with experimental data for polystyrene, polyethyl-
ene-terephthalate, bisphenol A polycarbonate, and
polymethyl-methacrylate was found. Oleinik inter-
preted experimental data of deformation calorimetric
studies, residual strain recovery rate measurements,
thermally stimulated creep, DSC, and computer sim-
ulation data during plastic deformation in terms of
small-scale so-called plastic shear transformations
(PST)28 or anelastic shear transformations (AST).29

The latter is believed to be a metastable, energeti-
cally excited, state of matter that is formed at the
early stages of deformation, being the key mecha-
nism for the total kinetics of yielding.29,30 Also mo-
lecular dynamics simulations of glassy polymethy-
lene have shown that inelastic deformation relates to
the nucleation of strain-bearing (local) defects rather
than to large-scale conformational changes of the
polymer coils.31 Recent direct measurements of mo-
lecular mobility before and at yielding of polymer
glasses in conjunction with simulations32,33 support
the notion of localized cooperative motions, where

the number of those regions increases drastically at
the onset of yielding.
From the above, one can draw the conclusion that

the origin of plastic deformation in metallic and poly-
meric systems are related. The question is then how to
rationalize such findings in a compact model. What is
a first step toward supplementing macroscopic consti-
tutive plastic flow-rules with some details about the
actual mechanism of irrecoverable deformation?
While some approaches have been mentioned above,
the similar observation in different materials calls for
a generic modeling approach. In the authors perspec-
tive, a significant step in this direction has been under-
taken my Falk and Langer.15 Based on the analysis of
molecular dynamics simulations, Langer et al. devised
a two-state model15 capturing the evolution of the
density and orientation of the STZ. That description
was further developed in Refs. 34 and 35. It is to these
works that we will refer to repeatedly when develop-
ing our thermodynamically admissible model.
As already stated, there are different terms associ-

ated to the localized transformation regions in the
process of plastic deformation in amorphous solids,
such as STZ, PST, and AST. In the remainder of the
article, we shall call them all STZ.
The manuscript is organized as follows. The model

for describing the plastic deformation or amorphous
solids is introduced in general in the following sec-
tion. Specifically, the approach entails to combine a
macroscopic model for elasto-viscoplastic deforma-
tion with the microstructural evolution in terms of
STZ. Following these two levels simultaneously, one
will learn about the mutual influences between the
macroscopic and microstructural levels of descrip-
tion. Then, the material specificity of the model is dis-
cussed, as well as the relation to the work of Langer
et al.15,34,35 Finally, the rate-dependent plastic defor-
mation behavior of polycarbonate is studied.

DEVELOPMENT OF THE MODEL

The development of the model is driven by the goal
to resolve the dynamics behind the plastic strain rate
tensor as it occurs in macroscopic approaches to
elasto-viscoplasticity. On the one hand, experimental
techniques and computer simulations allow us to
gain ever more detailed insight about the processes
in the plastic deformation of amorphous solids. On
the other hand, it is important to put such insight at
work in a concrete model. For that purpose, the
STZ-model as elaborated on by Langer et al.15,34,35 is
examined and further developed.

Dynamic variables of interest

It has been shown earlier that for describing the
(possibly anisotropic) elasto-viscoplastic behavior of
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materials on the macroscopic scale, the elastic part
of the deformation gradient is a convenient measure
for the state of recoverable deformation, in an Euler-
ian setting.36,37 More specifically, it has been shown
how a thermodynamically sound class of models
can be derived in terms of the quantities of the mo-
mentum density per unit volume u, elastic part of
the deformation gradient Fe, and a thermal variable,
e.g., the internal energy per unit volume e. We point
out that, since the plastic deformation is assumed
not to change the specific volume, we can use detF
¼ detFe, and thus the mass density per unit volume
is given by means of q ¼ q0 / detFe. In such a
model, the microscopic origins of plastic deforma-
tion are encoded rather indirectly in some constitu-
tive law. In view of dealing with potentially aniso-
tropic materials, one may think of choosing the
elastic part of the right Cauchy-Green deformation
tensor Ce ¼ Fe,T � Fe instead of Fe as a measure of the
elastic deformation. However, it must be pointed out
that in a Eulerian setting, as we adopt here, the kine-
matic equation for Ce is not closed in terms of Ce

itself, but rather involves additionally Fe. Therefore,
Ce is not a suitable replacement for Fe.

To account for the microscopic origin of plastic
deformation, one can embed in the macroscopic
model of elasto-viscoplasticity a description of the
microstructure evolution. Clearly, the success of the
approach depends on what quantities are chosen for
the quantities of the microstructure as is relevant for
the plastic deformation. Our approach taken here
rests on the assumption that STZ are the main cause
for the plastic deformation. Therefore, a number
density of such STZ (per unit mass), K, is a reasona-
ble variable to look at, in accord also with earlier
approaches.38 While this resembles the choice of a
dislocation density for describing the plasticity in
crystalline materials, there is a crucial difference. In
crystals, the dislocations (that are line defects in the
crystals) promote plastic deformation by their mov-
ing through the crystal lattice. In contrast, the STZ
are not believed to move significantly. Rather they
can be envisioned as regions in space of increased
mobility within them. In other words, it is their in-
ternal rearrangements that is related to plastic flow.
If the STZ do not move but nevertheless they should
have an effect in the (directed) plastic flow, it is
required that for their description we use a tensor of
rank higher than zero, i.e., a vector or a matrix. In
analogy to Langer et al.,15,34,35 we use a two-rank
orientation tensor N. Physically, the tensor shall be
upper-convected since it will carry the interpretation
of N ¼ hnni with n the orientation of the STZ, and
h. . .i the average over the zones. Note that orienta-
tional information is the minimal step beyond the
(isotropic; scalar) STZ-density to allow for the fact
that there the plastic strain rate has got directionality

in three-dimensional space. It is a matter of practical
application of the model to decide which structural
features are captured by N, i.e., which kinds of re-
arrangements in the STZ are of most relevance.
In summary, the full set of dynamic variables is

given by

x ¼ ðu; Fe; e;K;NÞ ; (1)

which are all functions of the spatial position r and
of time t. Note that the tensor N is constrained, since
due to its interpretation trN ¼ 1; this will have rami-
fications when taking partial derivatives.

Formulation of a closed set of evolution equations

Nonequilibrium thermodynamics acts as a guard-
rail, helping the modeler to cast the understanding
of a complex system with internal variables in a
form that complies with certain principles of ther-
modynamics. There is a wide variety of approaches
to nonequilibrium thermodynamics modeling, and
the relations between many of them have been
established.39,40 Here, we use a derivative of the gen-
eral equation for the nonequilibrium reversible–irre-
versible coupling (GENERIC) framework by Grmela
and Öttinger.41–43 In regard to the topic of this arti-
cle, this method seems to be the most suitable one,
in particular owing to its large flexibility in using
structural variables and to its applicability to noniso-
thermal situations. However, rather than using the
framework in its original form with two distinct gen-
erators and two operators,41–43 we use a weak for-
mulation in the form of some specific consequences
that follow from the full original form. More specifi-
cally, an important ingredient in the GENERIC
method is the fact that the total energy and the en-
tropy (the generators of the dynamics) must be con-
sidered separately, rather than in the combination of
a Helmholtz free energy. Furthermore, ramifications
of the conditions in the framework concern very spe-
cific statements about how the energy and entropy
change as a result of reversible and irreversible dy-
namics, respectively. Making for two generators two
statements each leads to four conditions on the dy-
namics of the system under consideration, as will be
elaborated in the following.
According to the GENERIC framework for (ther-

mally and mechanically) closed nonequilibrium sys-
tems,41–43 the first step is to choose the variables that
describe the situation of interest. Similar to the pro-
cedure in equilibrium thermodynamics, the choice of
variables must be such that they are independent
and sufficient to capture the essential physics. Such
a set of variables shall here be denoted by x. Once
the static properties are specified by an appropriate
choice of the generators, E[x] and S[x], conditions on
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the evolution of these generators amounts to condi-
tions on the evolution of the variables x, by way of
the chain rule. We define the following conditions
(2) as the ‘‘weak formulation’’ of GENERIC:

The reversible dynamics does not affect the total
energy and entropy of the system,

d

dt
E

����
rev

¼ 0 ; (2a)

d

dt
S

����
rev

¼ 0 : (2b)

The irreversible dynamics leaves the total energy
unaffected, while the entropy change is non-nega-
tive,

d

dt
E

����
irr

¼ 0 ; (2c)

d

dt
S

����
irr

� 0 : (2d)

While (2a) and (2c) state that the total energy is con-
served for closed systems, the dynamics can still
lead to re-distribution of the energy between the dif-
ferent contributions, namely (in this study) between
kinetic, elastic, STZ-related, and thermal contribu-
tions (see particularly ‘‘Application of the Model’’
below for more details).

It is important to emphasize that both for the re-
versible and the irreversible dynamics, there are two
conditions on the dynamics. Only in the case of iso-
thermal conditions, the respective two criteria can
me merged into one for the Helmholtz free energy
F ¼ E � TS with T the constant temperature. In the
following, we shall use the conditions (2) for analyz-
ing the dynamics of STZ embedded in a elasto-visco-
plastic continuum.

It is mentioned in passing that, for the application
studied here, the condition (2d) is closely related to
the so-called Clausius-Duhem inequality.44–46 The
latter is used frequently in continuum mechanics for
expressing the second law of thermodynamics.

Form of the evolution equations

General form

To make effective use of the thermodynamic condi-
tions (2), it is beneficial to use certain general prop-
erties of the evolution equations, rather than deriv-
ing all parts of all evolution equations. For example,
a lot can be drawn from purely kinematic argu-
ments, which are linked to understanding the defini-
tions of the variables x. More specifically, the kine-
matics specifies the advection terms in the evolution
equations. These contributions to the evolution

equations can (and should) be worked out. In con-
trast, constitutive relations for the stress tensor or
for irreversible processes shall be left unspecified, as
they will be studied in the light of the conditions
(2). In the following, we thus first write the general
form of the evolution equations of the variables (1),
namely,

otu ¼ �r � vuð Þ þ r � r ; (3a)

otFe ¼ �v � rFe þ j � Fe � jp � Fe ; (3b)

ote ¼ �r � evð Þ þ j : r�r � q ; (3c)

otK ¼ �v � rKþ _Knd ; (3d)

otN ¼ �v � rNþ j �NþN � jT
� 2ðj : NÞNþ _Nra þW _Knd ; ð3eÞ

with velocity and its gradient

v ¼ u=q ; (4)

j ¼ ðrvÞT : (5)

In the momentum balance (3a), the stress tensor r,
describing the source of momentum, requires a clo-
sure described further below. Similarly, the evolu-
tion of the nonkinetic energy density (3c) has the
usual form, where q represents the heat flux. To
keep the following treatments concise, we neglect
thermal conductivity. However, it is straightforward
to include it, when desired. The evolution of the
elastic deformation gradient (3b) consists of two
terms. On the one hand, the first two terms on the
right hand side (r.h.s.) of (3b) are of purely kine-
matic origin, and correspond to affine (elastic) defor-
mation in an Eulerian setting.36,44 However, upon
the onset of plastic flow, the accumulation of elastic
deformation is limited, as expressed by the so-called
plastic strain rate tensor jp. Because the density of
STZ, �, is measured per unit mass, it behaves in a
flow field as a scalar (rather than a scalar density).
This means that it is only advected with the flow
field but does not experience any change due to vol-
ume change, as expressed by the first term on the
r.h.s. of (3d). The second term on the r.h.s., _Knd, rep-
resents the effects of nucleation and destruction of
STZ. The evolution of the STZ-internal re-arrange-
ments (3e) is based on the following arguments.
First, the average structure is advected with the flow
field (�v.N) and distorted affinely by the flow field
(terms proportional to j). The contribution �2(j : N)
N ensures that the trace of the tensor remains
unchanged. In the field of liquid crystal polymers,
this contribution relates to the Doi-closure.47–50 Sec-
ond, _Nra represents the internal structural re-
arrangements (ra) of the zones under the action of
the applied stress. And finally, the nucleation and
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destruction of zones affects the average orientation
as well, by a term proportional to _Knd.

Constraints on jP, _Nra, and w

It is commonly assumed that the plastic deformation
is isochoric. To see how this condition affects the
evolution equation of the elastic deformation gradi-
ent Fe, we consider the evolution of its isochoric part,

~F
e ¼ Fe=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Fe

3
p

; (6)

with det ~F
e ¼ 1. It can be shown by direct calculation

that upon plastic deformation

ot~F
e
���
plast

¼ � jp � 1

3
ðtrjpÞ1

� �
� Fe : (7)

In other words, the plastic strain rate tensor that
changes the tensor ~F

e
only on the submanifold given

by det ~F
e ¼ 1 is of very specific form. Conversely,

one concludes that the plastic strain rate tensor in
(3b) can be written in the form

jp ¼ ĵp � 1

3
ðtrĵpÞ1 ; (8)

with ĵp the unconstrained plastic strain rate tensor.
In a similar way, we can proceed to discuss the

proper form of the evolution of N as to preserve the
condition trN ¼ 1 by the dynamics. With a symmetric
tensor c, we can introduce the traceless quantity N ¼
c/trc. With the material derivative Dt ¼ qt þ v �!,
one can show

DtN ¼ Dtc

trc
�N

trðDtcÞ
trc

: (9)

If c shows upper-convected behavior, Dtc ¼ j�c þ
c�jT, then all j-related terms in (3e) including the
Doi-closure are recovered by (9). In addition to that,
one learns from (9) that _Nra and w can be written in
the form (now assuming trc ¼ 1)

_Nra ¼ _̂Nra � ðtr _̂NraÞN ; (10)

W ¼ Ŵ� ðtrŴÞN : (11)

Since the internal re-arrangement of zones is at
the origin of plastic deformation, one can make the
natural choice

n _̂Nra ¼ ĵp ; (12)

with a scalar prefactor n and ĵp the same uncon-
strained plastic strain rate as in (8). The close rela-

tion between jP and _Nra is in agreement with a
more detailed study of Falk and Langer.35 However,
we clearly recognize that the constraints
otðdet~FeÞplast ¼ 0 and qt(trN)plast ¼ 0 lead to distinct
modifications in (8) and (12).
Summarizing all of the above, the form of the evo-

lution equations becomes

otu ¼ �r � vuð Þ þ r � r ; (13a)

otFe ¼ �v � rFe þ j � Fe � n _̂Nra � 1

3
ðtr _̂NraÞ1

� �
� Fe ;

(13b)

ote ¼ �r � evð Þ þ j : r ; (13c)

otK ¼ �v � rKþ _Knd ;

otN ¼ �v � rNþ j �NþN � jT � 2ðj : NÞN
(13d)

þ _̂Nra � ðtr _̂NraÞN
� �

þ Ŵ� ðtrŴÞN
� �

_Knd ; (13e)

where we have neglected the heat flux q for simplic-
ity. In (13), v ¼ u/q is the velocity field with the
mass density q ¼ q0/det F

e, and j ¼ qv/qr denotes
the velocity gradient.
It is now the task of the nonequilibrium thermo-

dynamics treatment to make statements about the
constitutive relations for the stress tensor r, the
unconstrained rate of internal re-arrangements _̂Nra,
and the rate _Knd of nucleation and destruction.

Generating functionals

To study the conditions that emerge from the appli-
cation of the constraints (2), we first specify the
functionals for the total energy and entropy in terms
of the variables (1) as follows,

E ¼
Z

u2

2q
þ e

� �
d3r ; (14a)

S ¼
Z

sðFe; e;K;NÞd3r ; (14b)

where we have only written the kinetic energy of
the volume element in explicit form. The quantity e
accounts for all forms of energy but the kinetic
energy. From the form of the energy E, it follows
dE/du ¼ u/q ¼ v for the velocity field. Note that
all thermo-mechanical properties of the material are
encoded in the function for the entropy density,
which shall be kept unspecified for the general
treatment. Only when simulating the dynamic
response for a specific material further below, we
will specify the thermodynamic function in more
detail.
Given the forms (14), the functional derivatives

become
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dE
dx

¼

v
� v2

2 q;Fe ¼ v2

2 qF
e;�1;T

1
0
0

0
BBBB@

1
CCCCA ;

dS
dx

¼

0
s;Fe

s;e
s;K
s;N

0
BBBB@

1
CCCCA : (15)

We use the notation yðxÞ;xi � ðoy=oxiÞjxk 6¼i
for par-

tial derivatives, where xk=i denotes the remaining
variables in (1) to be held constant upon differentia-
tion. Note that s,N is a constrained derivative due to
the condition trN ¼ 1. The procedure for accounting
for this condition in the derivative can be found in
Ref. 51.*

Derivation of the constitutive laws

Before applying the conditions (2), we briefly com-
ment on how to calculate the rate of change of a
general functional A of the variables x. Using the
chain-rule of variational calculus, one obtains

d

dt
A½x� ¼

Z X
i

dA
dxiðrÞ otxiðrÞd

3r ; (16)

where the summation runs over all variables in the
set x. In the above, we have tacitly assumed that the
integration domain is not changing in time, which is
sufficient for our purposes. Therefore, the conditions
(2) can be studied readily by combining the func-
tional derivatives (15) with the evolution equations
(13). The reversible and irreversible contributions to
dA/dt are obtained by inserting in (16) the reversible
and irreversible contributions of qtxi, respectively.

Implementation of the condition _Ejrev ¼ 0

The conservation of the total energy during reversi-
ble dynamics can be worked out using the chain
rule (16). As a result, one finds that the condition
(2a) is automatically satisfied, which is the confirma-
tion of the second term on the r.h.s. of (13c).

Implementation of the condition _Sjrev ¼ 0

It can be shown by direct calculation, that the con-
servation of the entropy during reversible dynamics
leads to a constitutive relation for the stress tensor.
In particular, one finds

r ¼ e� s

s;e

� �
1� s;Fe

s;e
� Fe;T � 2

s;N
s;e

�N : (17)

The details of this expression will be discussed
further below.

Implementation of the condition _Ejirr ¼ 0

The energy depends only on the variables u, Fe

(through q), and e. Of all these, only the elastic de-
formation gradient has got an irreversible contribu-
tion to its dynamics, however, that contribution is of
isochoric nature, i.e., trjp ¼ 0, according to (8). In
turn, this implies that the mass density is, by con-
struction, also not affected by the irreversible defor-
mation, and the total energy thus remains constant.
This conclusion can be reached also by performing
the calculation of _Ejirr along the lines of (16).

Implementation of the condition _Sjirr � 0

The total entropy must be a nondecreasing function
of time. Explicitly calculating _Sjirr one finds the con-
dition

_Sjirr ¼
Z �

� s;Fe � Fe;T
� 	devþ 1

n
s;N

� �
: n _̂Nra

þ s;K þ s;N : W

� �
_Knd�d3r � 0 ; ð18Þ

with the notation A : B : AijBij and [A]dev ¼ A �
(1/3)(trA)1 for the deviatoric part. In (18), we have
made use of the fact that trw ¼ 0, in accord with
(11). In this entropy production, one observes two
thermodynamic fluxes, n _̂Nra and _Knd, multiplied by
their respective thermodynamic forces. Clearly, in
the most general case, there can be cross-effects
between these different force-flux pairs.
For the purpose of simplification, we assume that

cross-couplings are absent. In this case, the fluxes
are only related to their own forces,

n _̂Nra ¼ ĵp ¼ð4Þ Q : � s;Fe � Fe;T
� 	devþ 1

n
s;N

� �
; (19)

_Knd ¼ Q s;K þ s;N : W

 �

; (20)

with a fourth-rank tensor (4)Q and a scalar Q as ki-
netic prefactors. While both of these prefactors may
be complicated functions of the variables x (e.g., by
way of a dependence on the stress), their choice
must not conflict with the inequality _Sjirr � 0. There-
fore, one obtains the conditions,

ð4ÞQ � 0 ; (21a)

Q � 0 ; (21b)

where (21a) is to be interpreted as A : (4)Q : A ¼P
ijklAij

(4)Qijkl Akl � 0 for all tensors A of rank two.

The final model

Summarizing the above results, the full set of evolu-
tion equations is given by (13) with stress tensor

*In summary, one finds s,N ¼ s,N |uc �(N: s,N|uc)1, where the
subscript ‘‘uc’’ indicates an unconstrained derivative.
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(17), unconstrained plastic strain rate tensor (19),
and nucleation/destruction rate (20), and the condi-
tions (21). While the choice of the internal energy
density e as a dynamic variable was convenient for
the calculations up to that point, it is more useful for
the application of the model to change instead to the
absolute temperature T as defined by

1

T
¼ s;e : (22)

Actually performing that change of variables, the
full set of evolution equations is given by (13),
where the internal energy equation is replaced by
the temperature equation and the constitutive rela-
tions are related to derivatives of the Helmholtz free
energy density, rather than to derivatives of the en-
tropy density. In particular, the constitutive relations
can be written in the form

r ¼ q f̂;Fe � Fe;T þ 2f̂;N �N
� �

; (23)

n _̂Nra ¼ ĵp ¼ �
ð4ÞQ
T

: q � f̂;Fe � Fe;T
h idev

þ 1

n
f̂;N

� �
; (24)

_Knd ¼ �Q

T
q f̂;K þ f̂;N : W
� �

; (25)

with conditions (21), and where f̂ ¼ f=q denotes the
Helmholtz free energy density per unit mass, and
f ¼ e � Ts is the Helmholtz free energy density per
unit volume. The stress tensor (23) constitutes the
definition of a hyperelastic material44 and is in
agreement with Truesdell and Noll, who obtained
this expression by equating the rate of entropy pro-
duction to zero (see p 296 in Ref. 44).

The evolution of the temperature becomes

cvDtT ¼ j : rðSÞ þ q

�
½̂e;Fe � Fe;T�dev � 1

n
ê;N

�
: n _̂Nra

� q

�
ê;K þ Ŵ : ê;N

�
_Knd ; ð26Þ

with ê the internal energy per unit mass and cv ¼ e,T
the constant-volume heat capacity per unit volume.
The symbol r(S) represents the entropic contribution
to the stress tensor, obtained from (23) by replacing
f̂ by �Tŝ with ŝ the entropy density per unit mass. It
is important to emphasize that for all derivatives in
(23–26), the quantities f̂ , ê, and ŝ are considered
functions of the variables Fe, T, K, and N.

It is pointed out that the above model cannot only
be formulated using the weak formulation of
GENERIC but also follows from the full structure of
the framework. In this respect, the above treatment
demonstrates which limited set of thermodynamic
restrictions, (2a–2d), are most relevant for this class
of models.

APPLICATION OF THE MODEL

To make the above model (13a, 13b, 13d, 13e, 21,
23–26) material specific, we need to specify the
quantities f̂ , (4)Q, n, Q, and w. This is done in the fol-
lowing. Afterwards, the relation of our approach to
the work of Langer35 is discussed in detail.

Material specificity

First, the static properties of the material are cap-
tured by the Helmholtz free energy density per unit

mass, f̂ . We make the assumption that f̂ can be
approximated by a sum of two contributions, one

due to the macroscopic elastic medium ( f̂elast ) and

one due to the STZ (f̂STZ),

f̂ ¼ f̂elast þ f̂STZ : (27a)

In analogy to our earlier efforts,37 the Helmholtz
free energy per unit mass of an elastic medium can
be expressed in terms of experimentally measurable
quantities. In particular, for given values of the iso-
thermal compressibility 1/K, the isobaric expansion
coefficient a, the constant-pressure heat capacity per
unit mass cp, and the elastic shear modulus G, all at
a given reference temperature T0 and pressure p0,
an approximate form of the Helmholtz free energy
density can be found by thermodynamic integra-
tion37

f̂elast ¼ K

2

1

q�ðTÞ
q�ðTÞ
q

� 1

� �2

� p0
q
þ 1

2

G

q�ðTÞ trð
~B
e � 1Þ

� cp
ðT � T0Þ2

2T0
; ð27bÞ

with q*(T) ¼ q0 [1 � a(T � T0)] and q0 the mass den-
sity at the reference point T0 and p0. Further, we

denote by ~B
e
the isochoric left Cauchy-Green strain

tensor ~B
e ¼ ~F

e � ~Fe;T, where ~F
e ¼ Fe=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Fe3

p
is the

isochoric deformation gradient. As for the contribu-
tion to the Helmholtz free energy density due the
STZ, we write

f̂STZ ¼ K
e1
2

N� 1

3
1

� �
: N� 1

3
1

� �

þ Ke2 þ kBTKlnðKm0=eÞ ; ð27cÞ

which the number density of STZ Kq and Euler’s
constant e. The first term on the r.h.s. of (27c) is
analogous to the ansatz in liquid-crystalline poly-
mers, and penalizes the orientation (e1 > 0). How-
ever, since the scope here is not on liquid-crystalline
polymers but on STZ, we refrain from using more
elaborate free energy expressions developed in that
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field of science. Rather, the first term on the r.h.s.
should be understood as a Taylor expansion around
the (isotropic) equilibrium state. The second contri-
bution allows to account for the fact that the mate-
rial needs to be excited (i.e., lifted to a higher energy
state) to become a STZ and perform a rearrangement
(e2 > 0).28,29 The last term accounts for the configu-
rational entropy of arranging the STZ differently
within the volume element. For dimensional reasons,
a constant m0 with the unit of a mass must occur in
the logarithm. Doing the explicit calculation for the
configurational entropy of noninteracting ‘‘particles,’’
i.e., explicit counting of states, one finds that m0 ¼
qv0 with v0 the smallest unit of volume in the discre-
tized phase space. Please note, that in the general
treatment in the preceeding sections there are no

restrictions on the form of f̂ . In particular, we have
not used the split (27a). Therefore, this application
section here can be adapted to more complicated sit-
uations [i.e., without the split (27a)] without the
need to redo all the general calculations of the
thermodynamics.

Second, the effect of STZ nucleation and destruc-
tion on the average orientation must be specified.
According to (13e), this is achieved by choosing w or
Ŵ, respectively. The nucleation or destruction of STZ
can lead to a change in the average orientation N. It
can be shown by a straightforward calculation, that
the change in average orientation assumes the form

_N
��
nd
¼ � N�N�ð Þ

_Knd

K
; (28)

with _Knd the change in the density of STZ. The
quantity N* denotes the average orientation of
nucleated ( _Knd > 0) or destroyed ( _Knd < 0) STZ,
respectively. For the time being, we assume that the
STZ are nucleated with random orientation, and that
they may subsequently be oriented by the applied
stress, in agreement with Ref. 35. To keep the cur-
rent treatment concise, we assume that the corre-
sponding choice N* ¼ (1/3)1 also holds for the
destruction of STZ. In summary, one obtains a rela-
tion between _Knd and the average orientation that is
captured in (13e) by the choice

Ŵ ¼ W ¼ � N� 1

3
1

� �
1

K
; (29)

which is of the required form (11).
And third, the kinetics of STZ-internal rearrange-

ments and nucleation/destruction is captured by the
kinetic quantities (4)Q and Q. For their specification,
we must first discuss the parameter n which quanti-
fies how the rate of internal rearrangements in (13e)
relates to the plastic strain rate in (13b). Therefore,

and also with reference to eqs. (3.11) and (3.12) of
Langer,35 n is of the form

n ¼ e0KmSTZ ; (30)

with e0 a shear-increment of order unity, and mSTZ is
the mass of a STZ. The argument to that result goes
as follows. If all parts of the material was energeti-
cally excited to become STZ, then the plastic strain
rate tensor would be equal to the rate of STZ-inter-
nal rearrangements ( _Nra) multiplied by the shear-in-
crement e0. If only part of the material is excited,
i.e., if the volume fraction KmSTZ < 1, an additional
factor KmSTZ is needed because the effective plastic
strain rate is proportionally smaller. In other words,
if the stress forces the STZ to re-arrange internally
(irrespective of the density of STZ), an additional
factor of n is needed in the relation between the
plastic strain rate tensor and the stress tensor. In
summary, in view of (24), we write

ð4ÞQ
T

¼ n
2g

ð4Þ1 ;

ðin accordance with a non-Newtonian flow ruleÞ
(31)

Q

T
¼ Q0 ; (32)

with the viscosity g describing STZ-internal rear-
rangements,

g ¼ A0s0 e
DH=ðkBTÞ s=s0

sinhðs=s0Þ ; (33a)

and the equivalent and characteristic stresses,
respectively,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðrd : rdÞ

r
; s0 ¼ kBT

v�
: (33b)

In (31), (4)1 is the fourth-rank identity tensor with
(4)1: A ¼ A: (4)1 ¼ A for all second-rank tensors A.
The tensorial structure of ansatz (31) is analogous to
what is used in eq. (3.11) in Ref. 35 for the plastic
strain rate tensor, the latter being co-linear to the
deviatoric part of the stress tensor. For the kinetics
of structural re-arrangement in the STZ described by
g, we assume that an Eyring-type argument is rele-
vant for that stress-activated process.52–54 In (33), we
use A0 for the fundamental vibration time, DH for
the activation enthalpy, and v* for the activation vol-
ume. In contrast, it is assumed that the change in
the density of STZ, _Knd, is directly proportional to
its driving force, i.e., Q0 ¼ const.
With the above specifications, all required quanti-

ties in the full model (13a, 13b, 13d, 13e, 21, 23–26)
can be calculated.
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Comparison with Langer (Ref. 35)

In this section, we compare our approach in more
detail with the work of Langer,35 specifically with the
eqs. (3.11–13) therein. We start with calculating the
plastic strain rate tensor jp (8) and the rate of internal
rearrangements _Nra(12), which occur in our evolu-
tion eqs. (13b) and (13e), respectively. In view of the
general form (24) and the kinetics (31), one obtains
for the unconstrained rate of re-arrangement and
unconstrained plastic strain rate tensor, respectively,

n _̂Nra ¼ ĵp ¼ n
2g

rdevelast �
1

n
qf̂;N

� �
; (34)

where rdevelast denotes the deviatoric part of the elastic
stress tensor contribution, i.e., of the terms in the
stress tensor (23) related to f̂elast. In turn, the plastic
strain rate tensor and the rate of internal rearrange-
ments become

jp ¼ n
2g

rdevelast �
1

n
q f̂;N � 1

3
trðf̂;NÞ1

� �� �
; (35a)

_Nra ¼ 1

2g
rdevelast �

1

n
q f̂;N � trðf̂;NÞN
h i� �

: (35b)

Despite the similarities between (35) and the eqs.
(3.11–12) of Langer,35 several differences are appa-
rent, even when making the choice (30) for n. First,
the first term on the r.h.s. of (35a) and (35b) is not
the deviatoric part of the total stress tensor, but only
of the elastic continuum in which the STZ are em-
bedded. Second, more important is the fact that the
remaining terms on the r.h.s. of (35a) and (35b)
are different, while they are assumed to be equal in
Ref. 35. The fact that they must be different in our
view can be traced back to the different conditions
imposed on the dynamics, i.e., the determinant-
related condition otðdet ~FeÞplast ¼ 0 in contrast to the
trace-related condition qt(trN)plast ¼ 0. The only
(mathematical) possibility for having identical driv-
ing forces for plastic flow and internal rearrange-
ments is to require that trðf̂;NÞ ¼ 0, which is not even
satisfied for the harmonic approximation (27c). In
Ref. 35, the second term on the r.h.s. of (35) is said
to play the role of a back stress. It must be pointed
out, however, that the f̂;N -related contributions in
(35) are of different form than the related contribu-
tion to the stress tensor (23).

The relation between the change in the STZ den-
sity, _Knd, and the average orientation of the STZ in
our approach differs slightly from the work of
Langer.35 While in his eq. (3.13) only a part of _Knd

(related to the nucleation of zones) affect the average
orientation, we here include the full _Knd as affecting
the average orientation.

For the remainder of this section, we discuss the
evolution equation of the density of STZ. In eq.
(3.13) in Ref. 35, the driving force for the process
does not depend on the average STZ orientation. In
contrast, we get in our treatment

_Knd ¼ Q0q
�
e1
2

�
N� 1

3
1

�
:

�
N� 1

3
1

�

�e2 � kBT lnðKm0Þ� ; ð36Þ

based on the general density evolution (25) and the
Helmholtz free energy density (27). The last contri-
bution on the r.h.s. depends on the number density
of already present STZ. As for the other two contri-
butions, one may tune the significance of orientation
(i.e., of STZ-internal structure) by the ratio e1/e2. To
simplify the comparison with Langer,35 we assume
for the remainder of this section that e1 ¼ 0. While it
still seems that the driving forces between Langer’s
and our approach differ, we show now that the two
can be matched by the following choice of the ki-
netic prefactor,

Q0 ¼ Q00
exp � e2

kBT

� �
� Km0

� e2
kBT

� lnðKm0Þ : (37)

Note that Q0 > 0 is satisfied if Q’’ > 0. Using this
form for the kinetic prefactor in (36), one obtains
under neglect of orientational contributions,

_Knd ¼ kBTQ
00q exp � e2

kBT

� �
� Km0

� �
; (38)

in close correspondence to eqs. (2.1) and (3.13) in
Ref. 35.
Finally, we comment on a specific ramification of

the nucleation and destruction of zones, eq. 36. For
e1 ¼ 0, the stationary state of the density of STZ is

Kjstatm0 ¼ exp � e2
kBT

� �
: (39)

This relation is also valid for a varying tempera-
ture in the sense of a quasi-stationary density, if the
nucleation and destruction of STZ is the fastest pro-
cess in the system. As a result, the relation for the
plastic strain rate tensor, eq. (35a), involves an effec-
tive viscosity of the form

geff �
g
n
¼ ðm0=mSTZÞ

e0
exp

e2 þ DH
kBT

� �
A0s0

s=s0
sinhðs=s0Þ :

(40)

Therefore, the activation energy of the overall vis-
cosity in the quasi-static approximation is composed
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of two terms, the activation energy for the genera-
tion of STZ (e2) and the activation energy for their
internal rearrangements (DH).

SIMULATIONS FOR POLYCARBONATE

Simulation procedure

The evolution equations (13a,13b,13d,13e,21,23–26)
with the above specifications were implemented and
solved in the software package MathematicaVR . All
simulations performed assume homogeneous defor-
mation as well as no heat transfer, i.e., adiabatic
boundary condition, with the environment. Because
the velocity gradient is spatially constant, which is
implied by the homogeneous deformation, it is not
required to solve the momentum balance (13a). The
simulations performed, are either in uniaxial exten-
sion or compression, or a combination of these two
loading conditions, e.g., cyclic loading. Only one
component of the transposed velocity gradient is
imposed, see Table I, the other components repre-
sent the free boundaries. To solve such a system of
equations, boundary conditions for the free bounda-
ries need to be specified, therefore the stress in these
boundaries is equal to the negative environmental
pressure, see Table I. The parameters used in the
material specific model (previous section) are listed
in Table II. While the parameter choices from q0 to
DH are material specific to polycarbonate and have
been used earlier for extensive comparison with ex-
perimental data,55,56 the other parameters in Table II
are related to the mesoscopic STZ-model and their
values are chosen as to illustrate the model.

Results

The simulation results for uniaxial compression and
extension are shown in Figure 1, cyclic loading in
Figure 2, and relaxation in Figure 3. All figures are
organized such that the subfigures (a) and (b) show
the response of the macroscopic quantities, i.e., the
stress in deformation direction (r11) and tempera-

ture (T), whereas the subfigures (c) and (d) depict
the response of the variables on the mesoscopic
level, i.e., the number of STZ’s (�) and the aver-
age orientation of the STZ in deformation direction
(N11). In all simulations performed, the applied
strain rate was varied between 10�4 s�1 and 10�2

s�1, and the maximum strain simulated in all sim-
ulations is 0.25 for extension and �0.25 for
compression.
Figure 1 shows the simulation results for uniaxial

extension and compression starting from zero strain.
On the macroscopic level, one observes that both the
yield stress and the temperature increase with
increasing strain rate, in good agreement with exper-
imental observations. Due to the increase of temper-
ature during plastic deformation, ‘‘thermal soften-
ing’’ is observed, i.e., the decrease of stress upon
further plastic deformation. In Figure 1(b), a differ-
ent slope is seen in the elastic part (|e| < 0.03) of
the deformation, this is the well known thermoelas-
tic effect described by Thompson.57 On the meso-
scopic level, the orientation increases weakly with
increasing strain rate. One should note the effect of
compressions for e < 0 on the orientation of STZ’s in
deformation direction; the zones will all orient in the
(22)- and (33)-directions in an equal fashion, how-
ever, both N22 and N33 are not plotted in the same
figure for the sake of clarity. The number of zones at
the strain |e| ¼ 0.25 decreases with increasing
strain rate, which is due to the shorter duration of
the simulation at the higher rates. In the elastic re-
gime, the number of STZ reaches a plateau value,
which is given by (39). On the onset of plastic

TABLE I
Form of the Velocity Gradient j and the Other Imposed
Boundary Conditions, with _e the Applied Deformation

Rate

Boundary conditions

jðtÞ ¼
_e 0 0
0 j22 0
0 0 j33

0
@

1
A

r22(t) ¼ r33(t) ¼ �p0

The other elements, j22 and j33, result dynamically from
the corresponding boundary conditions on the stress
tensor

TABLE II
Material Properties Specific to Polycarbonate for the

Thermodynamic Properties and for the Eyring Viscosity
at Room Temperature and Atmospheric Pressure,55,56 as

Used in the Example

Property Value

q0 (kg/m
3) 1197

T0 (K) 300
p0 (MPa) 0.1
cp(J kg

�1 K�1) 1200
a(K�1) 65 � 10�6

K (MPa) 4350
G (MPa) 833
A0 (s) 1.33 � 10�28

v* (m3) 5.8 � 10�27

DH (J) 4.82 � 10�19

Q0 (Pa�1 s�1 kg�2) 1040

e0 (�) 1.0
e1 (J) 25.0 � kBT0

e2 (J) 2.0 � kBT0

vSTZ (m3) v*
mSTZ (kg) q0vSTZ
m0 (kg) mSTZ

Symbols are explained in the text.
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deformation, and due to the large value for e1, the
nucleation of STZ is further promoted [see (36)]. The
fact that the transition between the elastic and plas-
tic response is rather sharp is related to the strong
stress-dependence of the Eyring viscosity (33).
Smoother transitions, in closer correspondence to
experiments, can be achieved by adopting a multi-
mode approach.53

In Figure 2 for cyclic loading, we observe the
expected response of the macroscopic quantities.
Particularly, Figure 2(a) shows again the strain-rate
influence on yield stress and ‘‘thermal softening,’’
and Figure 2(b) exemplifies the viscous heating and
the Thompson effect each time when the deforma-
tion is elastic. A nice result of the cyclic loading sim-
ulations is that one clearly observes that, already af-
ter one full cycle, there is an effect on the residual
orientation of the STZ’s.

The final simulations performed concern relaxa-
tion (Fig. 3). After a strain of emax ¼ 0.25 is reached,
the imposed strain rate is set to zero and the evolu-
tion of the macroscopic and mesoscopic quantities is

monitored. The maximum simulation time corre-
sponds to tsim ¼ 2emax= _emax and t ¼ tsim/2 corre-
sponds to the instant when the strain rate was set to
zero. The stress displays typical viscoelastic
response, see Figure 3(a), and decays under constant
applied strain. The temperature does not increase
when the strain is kept constant. In Figure 3(d), we
observe that the zones show only a weak tendency
to become more isotropically distributed during
stress relaxation; for the conditions considered, the
orientation of the zones is rather quenched in a state
that does not minimize the Helmholtz free energy
density (27c).
Finally, we comment on the simulated values of

Km0, which for the present set of parameters is equal
to the volume fraction of STZ, KmSTZ. The last con-
tribution in the Helmholtz free energy density (27c)
is of entropic origin, which reappears in the evolu-
tion Eq. (36), last term. This term has the effect that
as soon as Km0 approaches zero, a very large
increase in Km0 results; thereby, the entropy effec-
tively ensures that Km0 cannot go to (and below)

Figure 1 Extension and compression simulations of polycarbonate, with (a) the stress–strain response along the defor-
mation axis, (b) the temperature response, (c) the number of STZ’s and (d) the average orientation of STZ’s along the de-
formation axis. The symbols correspond to the applied deformation rates, 10�4 s�1 (D),10�3 s�1 (h), and 10�2 s�1 (!).
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zero. A similar effect is lacking for the upper limit of
close space-filling, Km0 � 1; if included it would
affect the behavior in Figures 1(c), 2(c), and 3(c) in
the regime of large plastic deformation. Although in
principle the corresponding modification of the en-
tropy can be done, it is not straight-forward and
hence needs a careful separate discussion. Further-
more, the entropy form chosen in this study leads to
a stationary value of the density of STZ that has the
Boltzmann form, which is the most common distri-
bution in statistical mechanics, and is readily appre-
ciated. Finally, the comparison with Langer’s work
is most clear with this specific choice of the entropy,
as shown above.

DISCUSSION

Clearly, describing the viscoplastic deformation of
glassy solids is a formidable task. It is not even clear
if a single model could possibly describe all amor-
phous materials in a satisfactory manner. However,
one can still make an attempt to model a certain

class of materials. The approach presented here rests
on the following ingredients. First, we have consid-
ered solids with a yielding mechanism related to
so-called STZ, i.e., localized domains in space with
increased mobility. On this basis, there is an interest
in the number density of these zones, their size, and
their shape (distribution), with the number density
being considered most relevant. Here, we have dis-
regarded the shape of the domains, and assumed
that they all have approximately the same size. In
addition to that, we have chosen an orientational
tensor for describing the internal structure of the
STZ. As a second main ingredient, we have made
use of nonequilibrium thermodynamics (weak for-
mulation of the GENERIC) to link the evolution of
STZ-density and internal orientation with the macro-
scopic deformation of the material. The result is a
closed model that explains not only how the macro-
scopic mechanical deformation affects the mesostruc-
ture but also how the mesostructure evolution leads
to viscoplasticity. In other words, the mesoscopic
and macroscopic levels interact mutually.

Figure 2 Cyclic loading simulations of polycarbonate, with (a) the stress–strain response along the deformation axis,
(b) the temperature response, (c) the number of STZ’s, and (d) the average orientation of STZ’s along the deformation
axis. The symbols correspond to the applied deformation rates, 10�4 s�1 (D),10�3 s�1 (h), and 10�2 s�1 (!).
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The linking of mesoscopic and macroscopic levels
in a single approach allows one to make an interest-
ing link between experiments and simulations.
Experiments and simulations nowadays give
insights about the dynamic heterogeneity before
yielding and to regions of nonaffine deformation
(see references in the Introduction). Such important
information can be accounted for in the model pre-
sented in this article. For example, the activation
energy for the nucleation of STZ (e2) and their inter-
nal re-arrangement (DH), the size of a STZ (mSTZ),
and the kinetics and amount of internal rearrange-
ments (g and e0) offer concrete possibilities. In turn,
the model presented here offers a way to implement
chemical specificity not through purely phenomeno-
logical parameters, but rather through properties
that are more clearly linked to the atomistic detail.

The proposed model is inspired by and compared
in detail with the approach of Langer et al.15,34,35

While the main structure of the mesostructure evolu-
tion is the same, differences can be found specifi-
cally in the driving forces for STZ-nucleation and for

internal re-arrangement. The reason for this discrep-
ancy is obvious. While Langer et al. start from a
more microscopic picture with zone populations for
given macroscopic stress, we depart from a joint
meso-macroscopic approach that also lets the macro-
scopic continuum evolve. Considering the entire sys-
tem, more direct use can be made of thermodynamic
principles (see section Development of the Model).
On the other hand, our approach falls short of con-
sidering the configurational/effective temperature
being distinct from the absolute temperature. This is
important physics for the modeling of glasses, and
therefore our current approach clearly needs to be
amended in this direction.
For illustration purposes, the behavior of the

model is demonstrated for extension and compres-
sion, cyclic loading, and for stress-relaxation (see
section Simulations for Polycarbonate). While the
macroscopic parameters are chosen to represent
poly-carbonate, the parameters related to the STZ
were chosen by plausibility, due to a lack of clear
experimental data. However, once such experimental

Figure 3 Relaxation simulations of polycarbonate, with (a) the stress–strain response along the deformation axis, (b) the
temperature response, (c) the number of STZ’s, and (d) the average orientation of STZ’s along the deformation axis. The
symbols correspond to the applied deformation rates, 10�4 s�1 (D),10�3 s�1 (h), and 10�2 s�1 (!).
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data becomes available, our model offers a proce-
dure to incorporate it such that the insights on the
mesoscopic scales are coupled to the macroscopic
thermo-mechanical behavior in a thermodynamically
consistent way.

Finally, we comment on a technical shortcoming
of the model presented here. Currently, we have
used a rather high value for the orientational effect
of the STZ, e1, which is in particular significantly
higher than the activation energy for STZ nucleation,
e1 	 e2. Physically, it may be difficult to argue in
favor of such a large value. Technically, this large
value was adopted as to prevent some elements of
N becoming unphysical under strong deformation,
e.g., N11 < 0. This shortcoming has a physical origin.
The entropy (i.e., the logarithm of the number of
available microstates for given N) is minimal if all
zones are oriented parallel to each other. The
approach to that minimal value is certainly not cap-
tured well by the Helmholtz free energy density
(27c). In future work we will, with reference to mod-
eling efforts in the field of liquid-crystalline poly-
mers, alleviate this problem by including an entropy
expression which approximates the behavior close to
perfect orientation adequately.

The authors acknowledge stimulating discussions from Prof.
E. F. Oleinik about the various aspects of yielding in amor-
phousmaterials.
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